LINCOLN, Neb.--(BUSINESS WIRE)--MatMaCorp (Materials and Machines Corporation), a developer of comprehensive molecular diagnostic systems, today announced the launch of its new hand-held device capable of conducting polymerase chain reaction (PCR) amplification and real-time fluorescent detection, anytime, anywhere. The device, called MYRTA™ (MY Real-Time Analyzer) was developed to provide portable, PCR-based molecular diagnostic solutions for human and animal health.
“The COVID-19 pandemic has highlighted the substantial need for over-the-counter and point-of-care testing to detect viruses, like SARS-CoV-2, and other disease-causing agents, at any time and any location in the world,” said Dr. Abe Oommen, MatMaCorp founder and President. “Almost all of the current handheld molecular diagnostic solutions have focused on isothermal amplification methods, but real-time PCR is still the gold standard for diagnostics that require high sensitivity and specificity.”
Real-time PCR is the primary method to reliably detect active infection of SARS-CoV-2 (the coronavirus that causes COVID-19) in patient samples. Efforts at developing easy-to-use and affordable over-the-counter (OTC) and point-of-care (POC) devices have been constrained by the fact that RNA or DNA isolation from samples must be integrated into the PCR amplification and detection steps. This has resulted in PCR-based methods for OTC and POC devices being side-lined, regardless of the fact that real-time PCR is the benchmark by which other molecular tests are measured. MatMaCorp successfully overcame these issues in the development of MYRTA, which can simultaneously conduct PCR amplification and rapid, real-time fluorescence detection.
“The ability to detect nucleic acids in real-time while running PCR amplification directly from the sample is a game changer in molecular diagnostics,” said Dr. Oommen. “Our flexible, robust, and portable MYRTA device will enable the use of PCR in numerous situations, making point-of-care and over-the-counter PCR-based testing possible in any part of the globe. Remote hospitals and clinics, as well as the military, can use this device to monitor disease causing pathogens.”
MatMaCorp has demonstrated accurate detection of SARS-CoV-2 and influenza A and B viruses directly from samples. In addition to human health applications, the MYRTA system could also be used in animal health, as shown by its ability to detect porcine reproductive and respiratory syndrome virus (PRRSV), a virus that causes major respiratory disease in pigs.
MatMaCorp plans to submit the MYRTA system to the U.S. Food and Drug Administration’s (FDA) for consideration of Emergency Use Authorization (EUA) for COVID-19 in the coming months. The FDA previously granted EUA to MatMaCorp’s COVID-19 2SF RNA test for the detection of SARS-CoV-2 on the company’s Solas 8 portable detection system. For more info on MatMaCorp’s COVID-19 testing solutions, click here.
About MYRTA™
The MYRTA device weighs less than one pound, can be easily held in one hand during operation, and can detect DNA or RNA targets within one hour. With the current testing format, MYRTA can process one sample with up to three different tests, and provide near quantitative information, including a Ct value. The device is based on fluorescence detection technology, and it is capable of running isothermal or PCR conditions (cycling between different temperatures), depending on the different needs for detecting DNA or RNA.
About MatMaCorp
MatMaCorp (Materials and Machines Corporation) is a developer of comprehensive solutions for science, medicine, and agriculture. By combining engineering, life science, and information technology, MatMaCorp has developed a portable, easy-to-use, and affordable suite of products to power human diagnostics, animal health, and agriculture applications, including food safety and breeding. Commercially available tests include: A2, African swine fever, and bovine congestive heart failure (BCHF). For more information, please visit www.matmacorp.com and follow the company on Twitter and LinkedIn.