LTE C-V2N and DSRC Connected Vehicle Latency Approximately Equivalent for Infrastructure Messages Says University of Alabama Study Presented at ITS America Annual Meeting

Cellular also deemed easier to install with more opportunity for widespread in-vehicle deployment

WASHINGTON--()--A side-by-side comparison of connected vehicle technology at 85 traffic signals in the Tuscaloosa, AL area showed that latency in delivering safety messages from roadside units (RSUs) to vehicles via dedicated short range radios (DSRC) and LTE cellular (C-V2N) was “approximately equivalent,” according to a study by the University of Alabama which was presented at the ITS America Annual Meeting in Washington, D.C.

The research, conducted by Alex Hainen, Ph.D., Assistant Professor at the Department of Civil, Construction and Environmental Engineering at The University of Alabama, looked at installation, maintenance, latency of transmissions from RSUs and scalability for in-vehicle deployment. The research was conducted in conjunction with the Alabama Department of Transportation.

“As connected vehicle communication methodologies, such as DSRC or cellular, continue to be debated, we wanted to look at the practical aspects of these technologies such as which can be quickly deployed by roadway operators and quickly adopted by the motoring public, and what role latency played in delivering RSU safety messages,” said Dr. Hainen. “We continue to look at additional applications for vehicle to infrastructure communications and how they can play a role in improving safety and efficiency.”

“We are pleased to support the University of Alabama and Dr. Hainen in this important work, which is significant and will help to drive connected vehicle technology to widespread deployment where it will do the most good,” said Bryan Mulligan, president of Applied Information.

According to the study: “The main justification for choosing DSRC technology over cellular is that DSRC communications have much lower latency than cellular communications. However, this project showed the 4G LTE communications had a latency period of less than 300 milliseconds. While this period is longer than the DSRC communications, this time difference in latency periods have very little difference in the applications tested with this platform. In the future, higher levels of automated driving may require low-latency V2V communication, but this current technology has already shown much potential as a connected traveler platform that can be easily used by today’s technology.”

The study also concluded that

  • Cellular technology was much easier to configure and install than the DSRC equipment.
  • In terms of configuration, the cellular units have the ability to have their firmware updated via “Over-the-air” updates.
  • The most reliable way to update the DSRC units is through direct ethernet connection and one must be physically at the pole to update the unit.
  • Aftermarket OBUs cost upwards of $1,000 and usually require modification of the vehicle. This makes distribution of DSRC technology beyond pilot programs expensive and impractical.

Equipment and Methods

The cellular equipment used was an AI-500-085 Processor unit provided by Applied Information. The units were installed in the traffic signal cabinets to monitor and communicate with both the cellular OBU and the TravelSafely smartphone app. The 500-085 processor also served as the Signal Phase and Timing (SPaT) translator from the traffic signal controller to the DSRC radio. DSRC radios were the ConnexUS Locomate Roadstar. Siemens M60 advanced traffic controllers were used. The TravelSafely system worked through both cellular and DSRC radio communication and processed whichever packet (either DSRC or cellular) arrived first.

About the University

The University of Alabama, the state’s oldest and largest public institution of higher education, is a student-centered research university that draws the best and brightest to an academic community committed to providing a premier undergraduate and graduate education. UA is dedicated to achieving excellence in scholarship, collaboration and intellectual engagement; providing public outreach and service to the state of Alabama and the nation; and nurturing a campus environment that fosters collegiality, respect and inclusivity.

The full paper can be downloaded from https://itswc.confex.com/data/abstract/itswc/2019/Paper_16664_abstract_2718_0.pdf

Contacts

For Applied Information
Bill Wells
+1 404-281-7490
bwells@appinfoinc.com

Release Summary

LTE C-V2N and DSRC Connected Vehicle Latency Approximately Equivalent for Infrastructure Messages Says Study Presented at ITS America Annual Meeting

Contacts

For Applied Information
Bill Wells
+1 404-281-7490
bwells@appinfoinc.com