Merck Increases Focus on Advanced Prostate Cancer, Expanding Immuno-Oncology Program with Three New Phase 3 Trials

Research Program Expanded Based on Promising Data Shown with KEYTRUDA® (pembrolizumab) in Combination with LYNPARZA® (olaparib), Chemotherapy and Anti-Hormone Agents in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC)

Data from Three Cohorts of Phase 1b/2 KEYNOTE-365 Study to Be Presented Today at the 2019 Genitourinary Cancers Symposium (ASCO GU)

KENILWORTH, N.J.--()--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced the presentation of interim data from the Phase 1b/2 KEYNOTE-365 umbrella trial investigating KEYTRUDA, Merck’s anti-PD-1 therapy, in combination with various agents for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC). These early findings show anti-tumor activity across three cohorts of the study, which investigated KEYTRUDA in combination with LYNPARZA (Cohort A, Abstract #145); docetaxel and prednisone (Cohort B, Abstract #170); and enzalutamide (Cohort C, Abstract #171) – with a safety profile consistent with each therapy alone. These results are being presented today at the 2019 Genitourinary Cancers Symposium (ASCO GU) in San Francisco. Based on the findings, Merck is initiating three new pivotal Phase 3 trials with KEYTRUDA in combination with LYNPARZA (KEYLYNK-010, NCT03834519), docetaxel and prednisone (KEYNOTE-921, NCT03834506) and enzalutamide (KEYNOTE-641, NCT03834493).

At the core of our research program is a commitment to investigate the potential of KEYTRUDA – both as combination and monotherapy – to serve as a foundational treatment, especially for cancers where additional therapies are needed,” said Dr. Roy Baynes, senior vice president, head of global clinical development, and chief medical officer, Merck Research Laboratories. “These promising data presented at ASCO GU coupled with the significant unmet medical need in patients with metastatic castration-resistant prostate cancer, propelled us to initiate three new Phase 3 trials to further evaluate these KEYTRUDA combination regimens.”

Merck’s existing clinical development program in metastatic prostate cancer includes studies evaluating KEYTRUDA and LYNPARZA as monotherapy and in combination with other anti-cancer therapies with various mechanisms of action. Ongoing trials include the Phase 2 KEYNOTE-199 trial for KEYTRUDA monotherapy and, in collaboration with AstraZeneca, the Phase 3 trials PROfound evaluating LYNPARZA monotherapy and PROPEL evaluating LYNPARZA in combination with abiraterone as a first-line therapy in patients with mCRPC. With the initiation of KEYLYNK-010, KEYNOTE-921 and KEYNOTE-641, Merck now has the largest clinical program with an anti-PD-1 therapy in prostate cancer and the only program to evaluate overall survival (OS) as a co-primary endpoint across three Phase 3 trials.

Data from KEYNOTE-365 Presented at ASCO GU

KEYNOTE-365 (NCT02861573) is an ongoing global, open-label, non-randomized, multi-cohort, multi-center, Phase 1b/2 study evaluating the safety and efficacy of KEYTRUDA (200 mg fixed dose every three weeks) in combination with LYNPARZA (Cohort A), docetaxel and prednisone (Cohort B) and enzalutamide (Cohort C) for the treatment of patients with mCRPC. The primary endpoints are safety, prostatic specific antigen (PSA) response rate (measured by confirmed decrease in PSA of 50% or greater) and overall response rate (ORR) as determined by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1; secondary endpoints include disease control rate (DCR), radiographic progression-free survival (rPFS) and OS. The study is designed to enroll 400 patients across four cohorts, with outcome measures assessed individually for each cohort. Data at ASCO GU include interim efficacy and safety findings from three of the study cohorts (A, B and C).

Data and Safety from Cohort A (Abstract #145)

Cohort A is reported on 41 enrolled patients previously treated with docetaxel, and up to one other chemotherapy and up to two second-generation anti-hormone therapies. Patients in Cohort A received KEYTRUDA in combination with LYNPARZA (400 mg capsules orally twice daily).

The efficacy analysis from Cohort A presented at ASCO GU showed a PSA response rate of 12 percent in the total cohort population (n=5/41), 14 percent among patients with measurable disease (n=4/28) and 8 percent (n=1/13) among patients with non-measurable disease. The median time to PSA progression was 15.3 (95% CI, 9.3-27.1) and 18.1 (95% CI, 9.3-21.0) weeks for patients with measurable and non-measurable disease, respectively. Among patients with measurable disease, the ORR was 7 percent (95% CI, 1-23), with a partial response rate of 7 percent (n=2/28). The disease control rate (of 6 months or more) was 29 percent (95% CI, 16-45) in the total cohort population, 32 percent (95% CI, 16-52) among patients with measurable disease and 23 percent (95% CI, 5-54) among patients with non-measurable disease. In an analysis of rPFS and OS endpoints, the median rPFS was 4.7 months (95% CI, 4.0-7.7) and the six-month rPFS rate was 48 percent; the median OS was 13.5 months at the time of analysis (95% CI, 7.7-NR) and the six-month OS rate was 73 percent.

Analysis of the safety data showed that 49 percent of patients had a grade 3 or 4 treatment-related adverse event (TRAE), the most common (occurring in ≥10% of patients) of which was anemia (27%). Immune-mediated adverse events observed in this cohort were grade 1 or 2 and occurred in 49 percent of patients; the most commonly reported immune-mediated adverse event was hypothyroidism (5%). One patient died of a TRAE of unknown cause.

Data and Safety from Cohort B (Abstract #170)

Cohort B is reported on 72 enrolled patients previously treated with either abiraterone acetate or enzalutamide and who had not received chemotherapy. Patients in Cohort B received KEYTRUDA in combination with docetaxel (75 mg) plus prednisone (5 mg) orally twice daily.

The efficacy analysis from Cohort B presented at ASCO GU showed a PSA response rate of 31 percent in the total cohort population (n=22/72), 22 percent among patients with measurable disease (n=8/36) and 39 percent among patients with non-measurable disease (n=14/36). The median time to PSA progression was 24.1 (95% CI, 15.1-30) and 30.4 (95% CI, 15.0-36.3) weeks for patients with measurable and non-measurable disease, respectively. Among patients with measurable disease, the ORR was 14 percent (95% CI, 5-29), with a partial response rate of 14 percent (n=5/36). The disease control rate (of 6 months or more) was 57 percent (95% CI, 45-69) in the total cohort population, 50 percent (95% CI, 33-67) among patients with measurable disease and 64 percent (95% CI, 46-79) among patients with non-measurable disease. The median duration of response was 4.9 months (95% CI, 4.0-8.3+). In an analysis of rPFS and OS endpoints, the median rPFS was 8.3 months (95% CI, 7.5-10.2) and the six-month rPFS rate was 79 percent; the median OS had not been reached at the time of analysis (95% CI, 12.9-NR); the six-month OS rate was 96 percent.

Analysis of the safety data showed that 36 percent of patients had a grade 3-5 TRAE, the most common (occurring in ≥10% of patients) of which was febrile neutropenia (12%). Immune-mediated adverse events occurred in 33 percent of patients, the most common (occurring in ≥ 10% of patients) of which were infusion-related reactions (11%) and colitis (10%); two patients died due to TRAEs (pneumonitis).

Data and Safety from Cohort C (Abstract #171)

Cohort C is reported on 69 enrolled patients previously treated with abiraterone acetate and who had not received chemotherapy. Patients in Cohort C received KEYTRUDA in combination with enzalutamide (160 mg per day orally).

The efficacy analysis from Cohort C presented at ASCO GU showed a PSA response rate of 26 percent in the total population (n=18/69), 40 percent among patients with measurable disease (n=10/25), and 18 percent among patients with non-measurable disease (n=8/44). The median time to PSA progression was 18.4 (95% CI, 15.4-48.3) and 12.4 (95% CI, 12.0-15.1) weeks for patients with measurable and non-measurable disease, respectively. Among patients with measurable disease, the ORR was 20 percent (95% CI, 7-41), with a complete response of 8 percent (n=2/25) and partial response of 12 percent (n=3/25). The disease control rate (of 6 months or more) was 33 percent (95% CI, 22-46) in the total population, 32 percent (95% CI 15-53) among patients with measurable disease and 34 percent (95% CI, 20-50) among patients with non-measurable disease. The median duration of response was 8.3 months (range, 0.0+-13.0+) – and at the time of analysis, 75 percent of patients had responses lasting for six months or longer. In an analysis of rPFS and OS endpoints, the median rPFS was 6.1 months (95% CI, 4.0-8.1); the six-month rPFS rate was 59 percent; the median OS had not been reached at the time of analysis (95% CI, 12.2-NR); the six-month OS rate was 91 percent.

Analysis of the safety data showed that 41 percent of patients had a grade 3 or 4 TRAE, the most common (occurring in ≥ 10% of patients) of which was rash (10%). Immune-mediated adverse events occurred in 41 percent of patients, the most common (occurring in ≥ 10% of patients) of which were severe skin reactions (20%) and hypothyroidism (13%). No patients died of TRAEs.

About Metastatic Castration-Resistant Prostate Cancer (mCRPC)

Prostate cancer is typically driven by male sex hormones called androgens, including testosterone. Castration-resistant prostate cancer (CRPC) is characterized when the cancer continues to grow despite surgery or treatment to lower the amount of male sex hormones. When CRPC spreads to other parts of the body, it is referred to as metastatic castration-resistant prostate cancer or mCRPC. Prostate cancer is the second most common cancer in men, with an estimated 1.3 million new cases diagnosed worldwide in 2018. In the United States, an estimated 174,650 men will be diagnosed with prostate cancer in 2019 and one in nine men will be diagnosed in his lifetime. Approximately 10-20 percent of men with prostate cancer will develop CRPC within five years; within two years of a CRPC diagnosis, 33 percent of men will develop mCRPC.

About KEYTRUDA® (pembrolizumab) Injection, 100mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the body’s immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industry’s largest immuno-oncology clinical research program. There are currently more than 900 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient’s likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

KEYTRUDA® (pembrolizumab) Indications and Dosing

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma at a fixed dose of 200 mg every three weeks until disease progression or unacceptable toxicity.

Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or nab-paclitaxel, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic NSCLC whose tumors have high PD-L1 expression [Tumor Proportion Score (TPS) ≥50%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

In metastatic NSCLC, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

When administering KEYTRUDA in combination with chemotherapy, KEYTRUDA should be administered prior to chemotherapy when given on the same day. See also the Prescribing Information for the chemotherapy agents administered in combination with KEYTRUDA, as appropriate.

Head and Neck Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. In HNSCC, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. In adults with cHL, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression. In pediatric patients with cHL, KEYTRUDA is administered at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for the treatment of patients with PMBCL who require urgent cytoreductive therapy.

In adults with PMBCL, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression. In pediatric patients with PMBCL, KEYTRUDA is administered at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [Combined Positive Score (CPS) ≥10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

In locally advanced or metastatic urothelial carcinoma, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

  • solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
  • colorectal cancer that has progressed following treatment with fluoropyrimidine, oxaliplatin, and irinotecan.

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

In adult patients with MSI-H cancer, KEYTRUDA is administered at a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression. In children with MSI-H cancer, KEYTRUDA is administered at a dose of 2 mg/kg (up to a maximum of 200 mg) every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 [Combined Positive Score (CPS) ≥1] as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA is a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA is a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA is a fixed dose of 200 mg every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The recommended dose of KEYTRUDA in adults is 200 mg administered as an intravenous infusion over 30 minutes every three weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression. The recommended dose of KEYTRUDA in pediatric patients is 2 mg/kg (up to a maximum of 200 mg), administered as an intravenous infusion over 30 minutes every three weeks until disease progression or unacceptable toxicity, or up to 24 months in patients without disease progression.

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%), and occurred more frequently in patients with a history of prior thoracic radiation (6.9%) compared to those without (2.9%). Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in patients with HNSCC, occurring in 15% (28/192) of patients. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barré syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 developed graft-versus-host disease (GVHD) (1 fatal case) and 2 developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptor–blocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (≥20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (≥20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or nab-paclitaxel in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC. The most common adverse event resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.8%). The most common adverse reactions (≥20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (≥20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those ≥1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (≥20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (≥20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those ≥2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (≥20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those ≥2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (≥20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (≥20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with HCC were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

Lactation

Because of the potential for serious adverse reactions in breastfed children, advise women not to breastfeed during treatment and for 4 months after the final dose.

Pediatric Use

There is limited experience in pediatric patients. In a trial, 40 pediatric patients (16 children aged 2 years to younger than 12 years and 24 adolescents aged 12 years to 18 years) with various cancers, including unapproved usages, were administered KEYTRUDA 2 mg/kg every 3 weeks. Patients received KEYTRUDA for a median of 3 doses (range 1–17 doses), with 34 patients (85%) receiving 2 doses or more. The safety profile in these pediatric patients was similar to that seen in adults; adverse reactions that occurred at a higher rate (≥15% difference) in these patients when compared to adults under 65 years of age were fatigue (45%), vomiting (38%), abdominal pain (28%), increased transaminases (28%), and hyponatremia (18%).

About LYNPARZA® (olaparib)

LYNPARZA is a first-in-class PARP inhibitor and the first targeted treatment to potentially exploit DNA damage response (DDR) pathway deficiencies, such as BRCA mutations, to preferentially kill cancer cells. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of tumor types with defects and dependencies in the DDR.

LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has a broad and advanced clinical trial development program, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS

There are no contraindications for LYNPARZA.

WARNINGS AND PRECAUTIONS

Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in <1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The duration of therapy in patients who developed secondary MDS/AML varied from <6 months to >2 years. All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy, and some also had a history of more than one primary malignancy or of bone marrow dysplasia.

Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.

If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.

Pneumonitis: Occurred in <1% of patients exposed to LYNPARZA, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.

Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.

Females

Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.

Males

Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.

ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/ nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).

ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).

Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%), and dyspepsia (20%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).

ADVERSE REACTIONS—Advanced gBRCAm ovarian cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).

Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).

ADVERSE REACTIONS—gBRCAm, HER2-negative metastatic breast cancer

Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).

Most common laboratory abnormalities (Grades 1-4) in >25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).

DRUG INTERACTIONS

Anticancer Agents: Clinical studies of LYNPARZA in combination with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.

CYP3A Inhibitors: Avoid concomitant use of strong or moderate CYP3A inhibitors. If a strong or moderate CYP3A inhibitor must be co-administered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.

CYP3A Inducers: Avoid concomitant use of strong or moderate CYP3A inducers when using LYNPARZA. If a moderate inducer cannot be avoided, there is a potential for decreased efficacy of LYNPARZA.

USE IN SPECIFIC POPULATIONS

Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.

Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.

Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).

Renal Impairment: No adjustment to the starting dose is necessary in patients with mild renal impairment (CLcr=51-80 mL/min) but patients should be monitored closely for toxicity. In patients with moderate renal impairment (CLcr=31-50 mL/min), reduce the dose to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).

INDICATIONS

LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:

First-Line Maintenance BRCAm Advanced Ovarian Cancer

For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients with gBRCAm advanced epithelial ovarian, fallopian tube or primary peritoneal cancer for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Maintenance Recurrent Ovarian Cancer

For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.

Advanced gBRCAm ovarian cancer

For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

gBRCAm, HER2-negative metastatic breast cancer

In patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.

Please click here for complete Prescribing Information, including Patient Information (Medication Guide).

About the AstraZeneca and Merck Strategic Oncology Collaboration

In July 2017, AstraZeneca and Merck, known as MSD outside the United States and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYNPARZA, the world’s first PARP inhibitor, and potential new medicine selumetinib, a MEK inhibitor, for multiple cancer types. Working together, the companies will develop LYNPARZA and selumetinib in combination with other potential new medicines and as monotherapies. Independently, the companies will develop LYNPARZA and selumetinib in combination with their respective PD-L1 and PD-1 medicines.

Merck’s Focus on Cancer

Our goal is to translate breakthrough science into innovative oncology medicines to help people with cancer worldwide. At Merck, the potential to bring new hope to people with cancer drives our purpose and supporting accessibility to our cancer medicines is our commitment. As part of our focus on cancer, Merck is committed to exploring the potential of immuno-oncology with one of the largest development programs in the industry across more than 30 tumor types. We also continue to strengthen our portfolio through strategic acquisitions and are prioritizing the development of several promising oncology candidates with the potential to improve the treatment of advanced cancers. For more information about our oncology clinical trials, visit www.merck.com/clinicaltrials.

About Merck

For more than a century, Merck, a leading global biopharmaceutical company known as MSD outside of the United States and Canada, has been inventing for life, bringing forward medicines and vaccines for many of the world’s most challenging diseases. Through our prescription medicines, vaccines, biologic therapies and animal health products, we work with customers and operate in more than 140 countries to deliver innovative health solutions. We also demonstrate our commitment to increasing access to health care through far-reaching policies, programs and partnerships. Today, Merck continues to be at the forefront of research to advance the prevention and treatment of diseases that threaten people and communities around the world - including cancer, cardio-metabolic diseases, emerging animal diseases, Alzheimer’s disease and infectious diseases including HIV and Ebola. For more information, visit www.merck.com and connect with us on Twitter, Facebook, Instagram, YouTube and LinkedIn.

Forward-Looking Statement of Merck & Co., Inc., Kenilworth, N.J., USA

This news release of Merck & Co., Inc., Kenilworth, N.J., USA (the “company”) includes “forward-looking statements” within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of the company’s management and are subject to significant risks and uncertainties. There can be no guarantees with respect to pipeline products that the products will receive the necessary regulatory approvals or that they will prove to be commercially successful. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements.

Risks and uncertainties include but are not limited to, general industry conditions and competition; general economic factors, including interest rate and currency exchange rate fluctuations; the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally; global trends toward health care cost containment; technological advances, new products and patents attained by competitors; challenges inherent in new product development, including obtaining regulatory approval; the company’s ability to accurately predict future market conditions; manufacturing difficulties or delays; financial instability of international economies and sovereign risk; dependence on the effectiveness of the company’s patents and other protections for innovative products; and the exposure to litigation, including patent litigation, and/or regulatory actions.

The company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in the company’s 2017 Annual Report on Form 10-K and the company’s other filings with the Securities and Exchange Commission (SEC) available at the SEC’s Internet site (www.sec.gov).

Please see Prescribing Information for KEYTRUDA at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf and

Medication Guide for KEYTRUDA at http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_mg.pdf.

Contacts

Media Contacts:
Pamela Eisele
(267) 305-3558
Ayn Wisler
(908) 740-5590
Investor Contacts:
Teri Loxam
(908) 740-1986
Peter Dannenbaum
(908) 740-1037

Release Summary

Merck Increases Focus on Advanced Prostate Cancer, Expanding Immuno-Oncology Program with Three New Phase 3 Trials

#Hashtags

$Cashtags

Contacts

Media Contacts:
Pamela Eisele
(267) 305-3558
Ayn Wisler
(908) 740-5590
Investor Contacts:
Teri Loxam
(908) 740-1986
Peter Dannenbaum
(908) 740-1037